\STRENGTH-OF MATERIALS~ —~ - -~ - CHAPTER FIVE 5
Slope and deflection of beams
Convention
1[ +Q
= i 4
Y +dy/dx
S1 .
ope B. S.F Loading

Deflection ()

M
Kelations between (loading ,shear force ,bending moment ,slope and deflection)
dg _ 1

d,
0 =L = slope Since: 61is small thus d; =d, but d; =Rd8 = Rdf =dx= —
d.r dc R
-2—_—i=_j_t_f.: { = d’y andO:dA/[ 0 E,Z—'i
“dx® R ? T dx dx’
i , >
Finally: Q= J'wd\::ﬂv:gQ:HV E](d ) 39 - ‘c%
dx dx? " 4 6
Macaulays method (direct integration) /’*//
¢ y/"' =8
d’ 2y - lg
M = EI g} = d—f’ = 4 M Integrating A e
dx* dx® *
dy 1 =— §
Y_ LM, +4 ”
dx
] ;
’ Y= T M 5T Ax+B Where A and B constants to be found from boundary
conditions
Type of loading.
(1) Cantilever with concentrated load.:
Ely"=M=—-wx W
S - L)
E1y’=—3wx + A — (1) y //

Ely= ——6]—wx3 + Ax+ B

Boundary conditions
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3
3 Atx=L:>y-0::>C:KL,
4
N Atx:L:>)720:>D:_2_§_”)LJ
120

————— +
24 60L 4 120
entrated loads:

< Simply supported bean with conc
ZOKN /<l
‘(w 30KN

d wx 4 S5 Lj,
( o v wlx 2 wL’

SMy=0=R, — J]SKN
S Fy=0= Ry _ 25KN

(x-3)+ 10(x—6)- 30(x—10)

RA

ER"=M= 15x—20

Ely'=—]}£x2—10(x—3)2+5(x—6)2—15(x—-10)2+A (1)
E]}’=—§‘X3——1§0-(x—3)3+§(x'—6)2—5(x-—10)3+Ax+B 5(2)
Boundary conditions
A =0=y=0=>B8=0
Note: (x-3) =0 forxs3
(x-6) 0 forxs<0
(x-10) =0 for x<10
= 10 gy 3 () - 5(2) A=—184.2
Atx:]2zr>y=0:>0=—2—(12)3——}—(9)3}—(6) 5(2)° +124=
LI 342 (x—6) _s(x—10) —184.2%
= T T g—3) o\
Ely=5% "3 ( )KN3)
Note . Unit used are (KM iy
on at the center x=0M :>(x—6)-—
The deflection @ o =0
=—-655.2KN.1713

Ely = J6) - 103y - 184.2(6)
2 3 i
-— 208 GPa and 1= 82 10°m

E
1;0: 384 * J07m = 384 mm
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| CHAPTER FIVE
STRENGTH OF MATERIALS

ﬁ_’_‘T’_’_P_d_—’J

I _ L2
1 Atx=L:>y'=0:>0=~2—wL +A:>A—2wL

-] 3 1 2 _-—1 3
L — = wl'+=—wL* - L+B=>B=—wL
Ax=L=y=0=0 6w P L 3

Ji 3 )| 2 1 r3
S Ely=——wx’ +—wl'x——wL
'y 611\' 3 3

wl?

" 3EI
cantilever beam with uniformly distributed load (U.D.L):

Eh'=M = —wx.g

| ]
A =0 Y= Vyae = E oy = =380 2 Yy =

A

' ] 3 A I L "

\ Ely'=——wx’s " WNm_ )
I HH[MHH;
Ely=——wx’ + Ax+B

24 | X\
Boundary conditions

il Atsz:>y'=0:>—éwL3+A:>A=éwL3

2, Azx=L:>y=0:>—iwL4 +iwL3.L+B:>B=—iwL"
| 24 6 8

y= —1—(——1—wa +le’x —iwLJ
EI\ 24 6 8

4 3

cantilever beam with increasing (U.D.]):

W,
wx = Ely"” = _(w+ 2_wa
L

Wﬁ\r

m w o, |
Ely =wx-sxl+d=Q

wx4+iA2 B
6 - 1Lt TR YBAC=0 (3

S N VTN P
Y X 60Lx +6Ax +—2-Bx +Cx+D —(4)
Boundary conditions
Atx=0:>Q=0:A=0

24
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e

< Simply supported beam with (U.D.L):

DMp=0 Y Fy=0

R, and Ry are found

S ED"=M=R,x-w(x-a) (x-a)

R4
=R \'——1 w(r—a)z
,1 g v

1 7 1 3

Ep'=—R,x" ——w\x—a

y 54 6 ( )

: EIyziR tj—iw(x—a)4+Ax+.B
(y) 6 24

Boundary conditions:

I Atx=0=>y=0=>B=0

I

w(N/m)\
ERERERERY R
al ( Ry
TR S —

; ] ,
2, Atx=a+b=L:>y:0::>B=0=éRaL3—Zw(x—a)J+AL:>A=

< Simply supported with (U.D.L) over a part of the beam:
b
EIy"=M=RA.x—w(x—a)( )+ w(x - )(x ) \
i =R,x—-1—w(x—a)2+iw(x—b)
P 2 2
I, 1 s ;
'=ZR x’ ——wlx—a) +=wlx—-b) + 4
Ely'=—Ryx 6w(x a) - (x—b)
1 3 ] 4 1 4
=— ——w(x—a) +—wlx-b) +Ax+B
Ely 6R,,x 24w(x a) 24w(x )
Boundary conditions:
. Atx=o0=y=0
2 Atx=L = y=0 )
From these equation A and B are found - b ol o
: a
e—s| =)
L

26

H’t(ﬁ

Rp

v
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< Simply supported beam with a couple :
S Mp=0
Y Fy=0 | a__,
R, and Ry are found | /I_
ER"=M =R .x—M,(x-a) _4& N
.\

EIy':";—R,,xz—éMo(x—a)+A R4

ElyzéR,,xj —éMo(x—a)2 +Ax+ B

- —~

Boundary conditions :

(N 4tx=0=>y=0=B=0

38}

Atx=L :>y:0:>0=éRAL3 —éMO(L—a)+AL:> A=
Example (1): Find y. for the beam shown in the figure?

Solution:
ER" =M =-40(x—1)

Ely =-20(x=1)° + A= (1)

C B
EIy=—2—30(x—])3+Ax+B——>(2) ‘___——&

_ 2
Boundary conditions: El= 65 MN/m
®  grx=d= ' =0=-203) +4
= A=180
20

2 Atx=4:>y=0:>0:—7(3)3+180(4)+B:>B:—540 ,

— 540
65*10°

Atx=0—‘—'>yc=EJI-(—0+0—540= )=—8.31*10‘3m
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Atx=3:>E]yd=10(3)3——3—(2)3_185*3:>J’d=‘19mm y =0

Ely,y = 30(3)° —10(2)° — 186 = 44
Ely. =30(1) —186 =—156
y max occurs between C and D (] > x = 3)

|

|

|

|

ER =30x210(x-1) —186 =0 = x=2.67m |
321.8 :

STRENGTH OF MATERIALS CHAPTER I'IVIE J
| Example: (2) find ysand ypax SOKN| ..
| for the beam shown in the figure QOKNl v COKN/m™
| if E= 200GN/m’ and 1=83*10° m' ? = ! ‘I'A l B
| Solution: 4 ¢ D (
| R, : Rp
1 > M =0= RA=60KN |1, m__,|, 2m .
. Y Fy=0=RB=130KN
[
] EIy"=M =60x—20(x—1)-50(x—3)- é.60(x—3)2
I Ely'= M =30x> — 10(x - 1Y = 25(x = 3" = 10(x = 3)’ + 4
10 3 23 3 10 4
Ely=M= 10x° ——=(x—1) ==(x-3 x—3) +Ax+B
o B 0 - 23 -24r-)
Boundary conditions:
25
I, Atx=5=y=0=0=10(50) ]30(4) —7(2) +54=> A=-186
- =0
10 z. Wt/ X:-0 J

—321.8KN.m’ = = =—19.4mm
fo Ely max M= Ymax 500w 106 % 83% 107

Example (3): Findyc and y; 20KN

ifp=0 and EI= 20 MN/m’ 2m m

Solution: ZO(AN/\z)

EL"=M — _20x-20x.==-20x—-10x" / = C
2 \ Bl x|

\ |
Ely' =-10x° —1—30-;:3 + A P
10 5 10 4
Iy=——x’——x"+Ax+B
Ely==7x"73"

i i 10 3
Boundary conditions : (1) Atx = dm = y' =0 =—10(4)2 ——?(4) +A=> A=373.3

(2) At x =4m

= y= 0_—Q(4) _2(4) +4*373.3=> B=—-1066.6

3 6
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STRENGTH OF MATERIALS CHAPTER FIVE ]

year =0 = (373.3)=18.667* 107 rad

20%*10°

yeate=0=—— ]03 (1066.6)=-53*10"m e
<UNI
2m | 2m

200KN)) !

Example: (3B): Find the value of the

force P to reduce the deflection of 111 ,Y INEEE l’
point ¢ to the half ? \ L

X

Solution : P

Q) Eb'=M =-20x- ZOx% = —20x—-10x* + P(x-2)

ER' =-10x’ —%\J +§P(x—2)2 +A

+éP(x—2)3+Ax+B

Boundary conditions:
Atx=0=y=265*%10"m=B=-20*10°*26.5%10" =-530

Atx=4m=y=0 =—i39(4) —%(4)4 +ép(2)’ +44-530 (1)

Atx=4m=y' =0=-10(4)" - ]30( )y +2P( 2V +A4>(2)

From (1) and (2) P= 80 KN

Example (4): Findy at the mid-point if .
d= 450 mm G, = 100 MN/m’ : 60KN/m
and E= 210 GN/m’

45; .
Solution : Ely" =Wx=—15- -1—‘ 15KN/m

2
Iy =—15x - 2% +4=0x
2L

Ely" = A2 2 _;i I+ Ax+ B = Mx

x?! +§Ax‘7 +Bx+C
s, 1,3 150
- X+ A’ +=Bx*+Cx+D
120L 6 2
Boundary conditions:
Atx=0=>y=0=>D=0
29
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: STRENGTH OF MATERIALS CHAPTER FIVE )

=0

. dtx=m=2M=0= —7_5(7): - __.i"‘ (7)j +74=> A=105
/70

, - 15 45 = i ;
4. Ax=Tm=2v=0==-"A(7) - 7) +=(105X7) +7 =-514.5
) 24 1:0*7() 6( N} $7C=C=-514
5 N 105
Ehv=—-—x"- - N — T —514S
24 120L 6 o
e
ER =-—15.\‘—;—‘\ + 1035
frx=35m Elv=-1172.35
| Mo v
IV o =—mles

| = {74
| =X +4667x-32.667 =0= x, =-8.5m(Neglect) M &
| X, =3.8m & ‘;,\
' ~
l ' - X
Stubs nmm.g this value in ;qmmon of M, T 3

M =——(‘ (3.84Y +105 (:» S-!)—_JJI\N m
| 232307 - 0*10‘
| 100%10° = ; £ =71=3552%10"%m"

(fp 332° 107°2210%10° »y=-1172.36 = y=—-10.67mm
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STRENGTI] OF MATERIALS ' CIIAPTER SI .‘U
INDETERMINATE BEAMS

DEIINITIONS: They are beams with extra supports. The reactions at these supports
can not be determined using the equations of equilibrium only, rather the deflection and
slope of beams must be concerned.

| 1. Built — in beams with concentrated loads : W
Y Fy=0 =R, +R; =W (i)
SM,=0 =-M,+R,.L-W.b+M,=0 —(2) MQF i
|  EB'=M_=-M,x"+R, x-W(x-a) R,

] 2 1 2
Ely'= =M ;x+SR,x" - ;W(.\- —a) +4

77/

N
N ),\/,,
A 4

Ry

A
LT~
.4

\J_‘
v

4

g / /
- Ely= —éM“, 7 +ER’{ % —EW(,\‘ - a)3 + Ax+ B

Boundary conditions:
. Atx=0 = y=0 = B=0
2. Atx=0 =y'=0 = A=0

I
3 Adtx=L =y'=0 :—MAL+ER/,L"—.

/

;W(L —a) —(3)

4 aix=L =y=0=-1M, P+ R -IwL-a) 5

Four equations with Four unknown ( R, Rz M, Mg)

2. Simply supported beam with concentrated loads:
> Fy=0 =R,+R,+R. =W - (1)

7N Y M =0 SR, L-Wa+R,b=0 —(2) e 4
|  E'=M=Rx-W(x-c)+R,(x-d) -

! ! 7 N - 3

] 1 2 2 2
Ely :ER”-\—-_EW(X—C) +5R“(.\'—a') + A R g P Wl R

Ely = %RA.\-‘ = —é w(x-c) + %RR(.\'— d) +Ax+ B

Boundary conditions:
1 1. Atx=0 = y=0 = B=0
2. Atx=d :>y:0:%R.,d‘—éW(d—c)“+Ad —(3)

3. Atx=L :>y:0:%RJL"‘—%W(L—c);+%RR(L—(1’)‘+AL —(4)

Four equations with Four unknown ( Ry, Rp. Re, A)

30
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STRENGITY] OF MATERIALS CHAPTER S XJ

5. Built — in beams with movement ()fSl([),’?()l'I.’

ZF-" =0 =R,=R, (/) | Ry
YMB=0 =M, +My=R,L —(2)
ED"=M=-M ,x" + R ,x ,xf,,,(;\‘

R,.; h

ED' =— M ;x + éR,,x*’ + A

I )
Ely==—Mx’ + éRij + Ax+ B

Boundary conditions.

q] At x=0 = y=0 = B=10
2. Atx=0 = y'=0 = A=0
3. Aix=L = y=6 :>E]5=—éMAL"+—é-R,,L3 —(3)
)

4. Aix=L  =y'=0 :>0=—M,,L+5R,,L~’ —(4)

Four equations with Four unknown ( R, Ry M, Mj)

40KN

/]

. T -6 4 _ 30KN/ h
Example (1): 1=42%10° m Vi =100 mm NMEEXEEXEX’ wﬂ

; . N 3 N
Find T e - /\I,.(A [ 2m TV 0 n‘_\ 12 5 m \‘)/‘\ |
Solution: R, 20KV Ris

£ Y Fy=0 =R, +Ry;+20=40+30*3 > (/)
D MB=0 = RA*3-MA+20%1.8-40%1.2-30%3% 1.5+ MB=0 —>(2)

Ely"=M=-M x" +R x+20(x - 1.2)= 40(x - 1.8) - 3()x*§

El' =—M \+1R XA 10(x=1.2Y =20(x—1.8Y =5x* + 4

E/y_—iM b +]R,,\ +Q(r—1z) —Q(r—ig) C b Ax+ B
2 6 3 3 4

Boundary conditions:

l. Atx=0 = y=0 = B=0
2. Atx=0 =y'=0 = A=0

P

3. Arx=3m =y =0=-M /(3)+ éRJ (3 +10(1.8) = 20(1.2Y = 5(3)" —(3)
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(STRENGTIT OF MATERIALS CCTIAPTER 51X

4. Arx=3m = yv=( =——,\/ (3) (’ R,(3) + ’;’(/‘s)‘ ‘”(/ z,s') '/’(3)’ - (4)
) : 3 /
From equations (3) and (4) = M ;= 25.4 KN.m R, =40.1 KN
Substituting R, =46.1 KN ineq.(l) R, =639 KN
Substituting R and M, in eq.(2) M =349 KN.m

Depending on shear force diagram the maximum bending moment occur at one of three
points (4,B,at x=1.8m)

Atx=18m =M ==24.4+46.1(1.8)+ 20(0.6) - 15(1.8)" =21.04 KN.m

M =34KN.m atB

max

M, Y x10° % 100% 107 N
; . o.mm — max '~ max _ 34 %10 100( / =8/ * /06 —
T/‘ J 42107 m-
: JOKN
S Y SORN/m ”
Example(2): EI=14MN/m’ Vi (} e 1‘*" g "*,‘% )j +§)
l by e z "L My,
Find RA, RB, MA, MB and yc R, 20KN _> Ry
Sol: !
D Fy=0 =R, +R,=40+24(30) (/)
> MB=0

=-M,+R,(4)-40(2.4)- 30(2.4) 74 +My=0 —(2)

Ely'=M=-M,x"+R, x——40(x-1 .6)—%(30)(,\‘—1.6)2

Ely'=-M, \+1R x*==20(x-1.6) =5(x~-1.6) + 4

q
E/v——lM o +]R % ———0(\—16) ~=(x-1.6)' +4x+ B
6 3 4
I Atx=0 = y=0 =B=0
2. Atx=0 = y'=0 = A=0

3. At x=4m 3)":()=—M_,(4)+%R,,(4)3+2()(2.4):—5(2.4)‘ - (3)

£ Arx=3m = y=0=—2 M@ + R, @) + 204 20 )

From equations (3) and (4) = RA=44.1KN ,MA=42.12 KN .m
Substituting these values in equation (1) = RB=67.9 KN
Substituting these values in equation (2) = MB=48.12 KN.m

32
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STRENGTI OF MATERIALS

e

W El Ye=- %(42. 12)(1.6)" + l(44. 1)(1.6)’

0

]
o h3'75=—1.7*10"‘m =—1.7mm

c= -
14*10°

Example : 3: E=210GN/m’ [=90*10"m" find R, ,R,,M , andM ,

A

My
/.’/mn<5§
| YFy=0 =R=R, () —R\,
|~ 2XMB=0 =M +M,=R 8 - (2) !
|  Eb"=M =-M x"+Rx

/ )
Eh'=—M ;x+ ERAx' + 4

Ely =— %M{,x” + éR"vag + Ax+ B

Boundary conditions:

. Atx=0 = y'=0 = A=0

2. Atx=0 = y=12mm =90*10™°*210*10°*0.012=B=226.8
e cteeSEm; == =—%R4(8)2—Mﬁ,(8) =R, =% - (3)

4. Atx=8m  =y=0= 0:%1;,, 8) ~%M/, (8)' +226.8

< =8533R,-32M,+2268=0 —(4)
From equations (3) and (4) = R,=5.3156 KN M, =2126KN.m

Substituting these values in (1) and (2) to get :
R,=5.3156 KN M, =21.26KN.m

Scanned with CamScanner



Mechanical Engineering Dept. Mechanics Of Materials
#

Thin Cylinders and spheres

When the thickness of the wall of the cylinderis less than(1/20)of the diameter of
cylinder then the cylinder is considered as thin cylinder.Otherwise it is termed as thick

cylinder.

Equilibrium of half of the cylinder: Pdl=204 T.L

L=Length of the cylinder d= Diameter of cylinder t = thickness of cylinder P= Internal

Pressure due to fluid. Circumferential Stress or Hoop Stress (ow). Longitudinal Stress

(ov
P.d
Oy = Z_t-
—> g _ & _
Longitudinal stress: Consider now the cylinder as - 1
e P ot
shown. Total force on the end of the cylinder owing to = - d
internal pressure: pressure X area = p X md% 4 = - *-— L
o.m.Dt — }
!
_P. d
DT %t

* Page No. O
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Mechanical Engineering Dept. Mechanics Of Materials

Change in Length:

The change in length of the cylinder may be determined from the longitudinal strain, i.e.

neglecting the radial stress.

. 1
Longitudinal strain = z [o,—vou]

and change in length = longitudinal strain x original length

try| —

[GL-'VO'"]L

I
B

[1—2v]L

Change in Diameter:

En= E(JH —voy)

m(D+AD) 1 PD _PD

D E'2¢e  Var
AD —PDZ 2
- 4tE( v)

Change in Internal volume:
T m
V=ZDZL - AV=Z(D2AL+L.D.AD)

AD

L Ty Yt
- L D

AV 2

Page No. O
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Mechanical Engineering Dept. Mechanics Of Materials
-———_—_____—_-—___—__——_—_

AV = v[:tE (1-2v) +:tE(2 v)]

AV = V[ZFE(S 4)]

Thin shperes under internal pressure:
Equilibrium of half of the sphere:

Total force on the end of the cylinder owing to

; - 2
internal pressure: pressure x area = p x Td*/

4 =opm.D.t ‘
)

{28
4.t

a

gy =

En= E(GH — Vo)

m(D+AD) 1 PD _PD

D " E‘ar Var)
AD—PDzl
—4-tE( v)

T s
V=2D® o AV =(3DAD)

_e
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Mechanical Engineering Dept. Mechanics Of Materials

%——

Vessels subjected to fluid pressure :

If a fluid is used as the pressurisation medium the fluid itself will change in volume as
pressure is increased and this must be taken into account when calculating the amount
of fluid which must be pumped into the cylinder in order to raise the pressure by a

specified amount, the cylinder being initially full of fluid at atmospheric pressure. Now

the bulk modulus of a fluid is defined as follows:

volumetric stress
volumetric strain

bulk modulus K =

where, in this case,volumetric stress = pressure p
change in volume 6V

and volumetric strain = —— g =
original volume |4
oviV 4
. : . 14
1e. change in volume of fluid under pressure = K

The extra fluid required to raise the pressure must, therefore, take up this volume together
with the increase in internal volume of the cylinder itself.

extra fluid required to raise cylinder pressure by p

pd pV
AE [5—4v] V+Y

Similarly, for spheres, the extra fluid required is
pV

3pd
—E[I—V]V‘FY

Page No. O
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Mechanical Engineering Dept. Mechanics Of Materials
e E——
Example: (a) A sphere, 1m internal diameter and 6mm wall thickness, is to be
pressure-tested for safety purposes with water as the pressure medium. Assuming that
the sphere is initially filled with water at atmospheric pressure, what extra volume of
water is required to be pumped in to produce a pressure of 3 MN/m? gauge? For water,
K=2.1GN/m? (b) The sphere is now placed in service and filled with gas until there is
a volume change of 72 x10® m®. Determine the pressure exerted by the gas on the
walls of the sphere. (c) To what value can the gas pressure be increased before failure
occurs according to the maximum principal stress theory of elastic failure? For the
material of the sphere E = 200 GN/m?, v = 0.3 and the yield stress oy, in simple

tension = 280 MN/m?.

Solution

volumetric stress

(@) Bulk modulus K = , -
volumetric strain

Now volumetric stress = pressure p = 3 MN/m?
and volumetric strain = change in volume + original volume
. P
le. K= SUIV
. pV  3x10° 4rn )
=r—=—"2x—(05
change in volume of water K= 21x1° <3 (0.5)

=0.748 x 10 °> m®

(b) From eqn. (9.9) the change in volume is given by

Page No. O
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Mechanical Engineering Dept.

Mechanics Of Materials

Cylindrical vessel with hemispherical ends:

Consider now the vessel as shown in

which the wall thickness of the
cylindrical and hemispherical portions
may be different (this is sometimes
necessary since the hoop stress in the

cylinder is twice that in a sphere of the

L)

t

i
1T

9'444J

same radius and wall thickness). For the purpose of the calculation the internal diameter

of both portions is assumed equal, From the preceding sections the following formulae

are known to apply.

(a) For the cylindrical portion:

hoop or circumferential stress = o4 = ——

longitudinal stress = o L=

. : : 1
hoop or circumferential strain = B (e H.— VO Lt] -

(b) For the hemispherical ends:

pd
hoop stress = =—
P 7H " 4,
: 1 :
hoop strain = 7 loy,—voy . =

2t.

pd
4t,

pd

4t.E [2-v]

pd
—-_—T1 -
4:,Et V]

Thus equating the two strains in order that there shall be no distortion of the junction

pd -
R—E[Z v]_4t,E

[1=v]

ie.

t, (1-v)

L (2 - V)

Page No. O
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Mechanical Engineering Dept. Mechanics Of Materials

R T e I S — — — — — — — e ———————

3pd
(SV—ZI—E(I—V)V

_3px] x $7(0.5)*(1 —0.3)
T 4x6x1073 x 200 x 10°

_72x10'6x4x6x200x106><3
P 3% 4n(0.5) x 0.7

= 314 x 10> N/m? = 314kN/m?

72 x107°

(¢) The maximum stress set up in the sphere will be the hoop stress,
. pd
1.€. 01 = o’H - Z
Now, according to the maximum principal stress theory failure will occur when the

maximum principal stress equals the value of the yield stress of a specimen subjected

to simple tension,

ie. when g, = g, = 280 MN/m’
d
Thus 280 x 10% = pe
4t
280 x 106 x 4 x 6 x 107°
p =
1

— 6.72 x 106 N/m? = 6.7 MN/m’

The sphere would therefore yield at a pressure of 6.7 MN/m?.
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With the normally accepted value of Poisson's ratio for general steel work of 0.3, the
thickness ratio becomes :

<o
3

“

~

~n
e
RS

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the

hemispherical ends for no distortion of the junction to occur.

Example: A cylinder has an internal diameter of 230 mm, has walls 5 mm thick and is 1
m long. It is found to change in internal volume by 12.0 x m*® when filled with a liquid at a
pressure p . If E = 200GN/m? and y= 0.25, and assuming rigid end plates, determine:

(a) the values of hoop and longitudinal stresses;

(c) the necessary change in pressure p to produce a further increase in internal volume
of (longitudinal) are assumed; 15 %. The liquid may be assumed incompressible.

Page No. Q
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nder of original volume 65.5 x 10- m3 and
he internal pressure 14 bar (1.4 MN/m?).
ans:17.5 x 10-6m’.]

Determine the change in volume of a thin cyli
length 1.3 m if its wall thickness is 6 mm and t
For the ylinder material E =210 GN/m* v =0.3.

What must be the wall thickness of a thin spherical vessel of diameter 1 m ifitisto
withstand an internal pressure of 70 bar (7 MN/m?) and the hoop stresses are limited to

270 MN/m?

of 150mm internal diameter and plate thickness Smm, is
bar (7 MN/m?); the increase in volume owing to the

atio and the modulus of rigidity.

. A steel cylinder 1 m long,
subjected to an internal pressure of 70
pressure is 16.8 x m3. Find the values of Poisson's r

Assume E =21 0GN/m”.

made from 12mm thick plate, and it is to be
the additional volume of water which it is
the vessel is initially just filled with water, in
(1 1.6 MN/m?). The bulk
, E =200 GN/m?, v =0.3.

. A spherical vessel of 1.7m diameter is

subject4 to a hydraulic test. Determine
necessary to pump into the vessel, which
order to raise the pressure to the proof pressure of 116 bar
modulus of water is 2.9 GN/m?. For the material of the vessel

ans:26.14 x10-6 m’
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Thick cylinders:
Lame theory:

Consider the thick cylinder as shown, The stresses acting
on an element of unit length at radius rare as shown in Fig.
the radial stress increasing from o, to o, + do, over the

element thickness dr (all stresses are assumed tensile),

For radial equilibrium of the element:

dé

2F.=  (0,+do,)(r+dr)d6 x | — g, x rd x 1 =20y xdr x 1 x sin 3

For small angles: sin d?('? - d79 radian o, +do,

Therefore, neglecting second-order small quantities,

do ™ N
rdo, + a,dr = o d = A
o.dr = ggar | g, +r 7 oy \ o, /7\ ™ Unit length
d \dﬁ/ |
o ) Vl

Or: oy—o, =T
H—Cr dr

Assuming now that plane sections remain plane, i.e. the longitudinal strain .zL is constant across
the wall of the cylinder:

1 1
£L = E[JL—VC’," Y7H = loL—V(g, +0n)] = constant

It is also assumed that the longitudinal stress o, is constant across the cylinder walls at points

remote from the ends

0, + gy = constant = 24 (say) )

T do,
Substituting in (1) for o, . 2A—0,—0a, =7 o
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Multiplying through by r and rearranging, =0
d
et —Art)=0
. . 2 2 B
Therefore, integrating, 0,1° — Ar® = constant = — B (say) G =4A=5
r
. B
And from equation (2) : ocy=A+ )

Thick cylinder - internal pressure only:
Consider now the thick cylinder as shown subjected to an internal
pressure P, the external pressure being zero:

Atr=R, o,=—P and atr=R, ¢,=0

The internal pressure is considered as a negative radial stress since it &
will produce a radial compression (i.e. thinning) of the cylinder

walls and the normal stress convention takes compression as w
negative.

Substituting the above conditions in radial stress equation:

B
—P=A— }?2_ And 0=A- R_§
PR? PR2R2
=——1 _ and B=—7 12
AT®mR-R) ™M PTE-RD
B PR? R3
i =A-—= = 2
radial stress o, - RIZRD [1 . ]
where k is the diameter ratio D,/D, = R,/R,
PR? R2
and hoop stress 6y = R-K) 1 T

e o[ R
T(RE-RH)| P K2 -1
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Longitudinal stress: Consider now the cross-section of thick 4 |

cylinder with closed ends subjected to an internal pressure Pland 7 9 — !
an external pressure P, 2
P z RSN =it
I N
For horizontal equilibrium: G .
2 2 2 2 ! ' * * \
Planl-—PZXﬂ.'R2=0'LX7I(R1—R)) Closed ends

where oy is the longitudinal stress set up in the cylinder walls,

. P,R1-P,R}
longitudinal stress 6, = —p2 _p7
2— ™

O'L=A

Cbange of cylinder dimensions: (a) change in diameter

1
€y = E[”H""O}—VUL]
2r
AD = E[a,,—va,—va,,]

(b) Change of length:

AL = %[UL-G’V'—VUH]
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Compound cylinders:

Original O.D. of

inner cylinder

Final common rodius

Original T.D. of
outer cylinder

(a) shrinkage-internal cylinder:

Atr=R,, 0,=0

Atr=R, o,=—p (compressive since it tends to reduce the wall thickness)
condition (b) shrinkage—external cylinder:

Atr=R,;, 0,=0

Atr = idF, o,=—P
condition (c) internal pressure —compound cylinder:

Atr=R,;, 0,=0

Atr=R, o,=-P,
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Shrinkage or interference allowance:

since circumferential strain = diametral strain
. : . . : 25, 9,
circumferential strain at radius r on outer cylinder = > =7 "6,
T
. : . . . : 25, o
circumferential strain at radius 7 on inner cylinder= o> =—=—fy
r r

(negative since it is a decrease in diameter).
Total interference or shrinkage = 5,+6; = re, +r(—&y)

= (ey, — &g )r
Now assuming open ends, i.e. 6, =0,
Oy 1 .
£y =—2 - since g, = —
H, E, E, (—p) A p
g y
i Ez E2 p) r; p
. . 1 1
Therefore total interference or shrinkage allowance = [E—(a u, TV1P)— E—(c B, +v3p)]r

1 2

Generally, however, the tubes are of the same material.

Shrinkage allowance = % (6g,—0y)
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Example1.

A thin cylinder 75 mm internal diameter, 250 mm long with walls 2.5 mm thick is subjected
to an internal pressure of 7MN/m?. Determine the change in internal diameter and the
change in length.

If, in addition to the internal pressurc, the cylinder is subjected to a torque of 200N m, ﬁn;l
the magnitude and nature of the principal stresses sct up in the cylinder. E = 200 GN/m*.
v=03.

Page No. O
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Example 1: A thick cylinder of 100 mm internal radius and 150 mm external radius is
subjected to an internal pressure of 60 MN/m?” and an external pressure of 30 MN/m?. Determine
the hoop and radial stresses at the inside and outside of the cylinder together with the
longitudinal stress if the cylinder is assumed to have closed ends.

Solution:
atr=01m, o, =—-60MN/m? atr=0.15m, o, = —30MN/m’
—60=A4-100B —-30=A-445B
B=0.54 and A=-6
B _
oy=A+-—7=-6+0.54x100 = 48 MN/m?
and at r = 0.15m, g,=—6+054x445=—6+24

= 18 MN/m?
From eqn. (10.7) the longitudinal stress is given by
_ P,R?—P,R? _ (60 x 0.12-30x0.15%)
LT TRI-R) (015 -01%)

_ 10%(60 — 30 x 2.25)
- 1.25 x 102

= —6MN/m? ie. compressive

Example An external pressure of 10 MN/m? is applied to a thick cylinder of internal diameter
160 mm and external diameter 320 mm. If the maximum hoop stress permitted on the inside wall
of the cylinder is limited to 30 MN/m?, what maximum internal pressure can be applied
assuming the cylinder has closed ends? What will be the change in outside diameter when this
pressure is applied? E = 207 GN/m?, v =0.29.
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Combined stresses:
The circle used in the preceding section to derive some of the basic formulas relating to the

transformation of plane stress was first introduced by the German engineer Otto Mohr (1835—

1918) and is known as Mohr’s circle for plane stress. This method is based on simple geometric

considerations and does not require the use of specialized formulas. While originally designed

for graphical solutions.
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¥
Examplel: For the state of plane stress already considered as
shown in figure, (a) Construct Mohr’s circle, (b) Determine the 10t MPa -
principal stresses, (c) Determine the maximum shearing stress and | a
, Y 50 MP:
the corresponding normal stress. —— ) AE
. T(MPa} D {m)
Solution:
1[]—:—‘ —
Yl b= x\
o / A
| | G € F |A o(MPa
TN ]
\ -e?_,' /
\ 20 R 41‘3'
-.. ________.-"' X
™
jd F(MPa))
f o=, = 20
o'=20MPa _ fo'=20MPa b
€ e _
7L Tow = 50 MPa YTl =~
\/7LA Flnu::_ﬁ{]
If' o ,
o 8] N
\ o c J; I o{MPa)
Y j \ -~ N 24,=53.1°
e = T0 MPa \----5_ L X
NI E R=50
—r-? > .“- I \U.'r.l = 30 -\'”);‘ -— Um;m:T[] —_—
0 "/* '. P i = — a0
[ x
A
D e




Example2: single horizontal force P of magnitude 150 Ib
is applied to end D of lever ABD. Knowing that portion
AB of the lever has a diameter of 1.2 in., determine (a)
the normal and shearing stresses on an element located at
point H and having sides parallel to the x and y axes, (b)

the principal planes and the principal stresses at point H.




Example3: A stress element has 0 x = 80 MPa and 7 xy = 50 MPa
cw, as shown in Figure. Using Mohr’s circle, find the principal
stresses and directions, and show these on a stress element
correctly aligned with respect to the xy coordinates. Draw another

stress element to show 7 1 and 7 2, find the corresponding normal

stresses, and label the drawing completely.

Solution:

S| —

&0

i |




’—— 300 mm

i

H.w:
1. Determine the principal stress developed at point A on ’}
the cross section of the beam at section a-a. [ T
S![] mrr|1
Section a—a

2. Determine the maximum in-plane shear stress developed
at point A on the cross section of the beam at section a-a,
which is located just to the left of the 60-kN force. Point A

is just below the flange.

3. Determine the equivalent state of stress if an element is oriented

25° counterclockwise from the element shown.

4. Determine the principal stress, the maximum in-plane shear
stress, and average normal stress. Specify the orientation of the

element in each case.

‘-—[1_5 m—i

i

30kN

|~1 0o mm—l
1

10 mm

Im |

10 mm

~ 180 mm

10 mm

Section a-a

550 MPa

_ =

200 MPa

— ¥ = S00MPa

350 MPa




2-1. Failure Theories

Unfortunately, there is no universal theory of failure for the general
case of material properties and stress state. Instead, over the years
several hypotheses have been formulated and tested, leading to
today’s accepted practices. Being accepted, we will characterize
these “practices” as theories as most designers do.

Structural metal behavior is typically classified as being
ductile or brittle, although under special situations, a material
normally considered ductile can fail in a brittle manner. Ductile
materials are normally classified such that & > 0.05 and have an
identifiable yield strength that is often the same in compression as in
tension (Sy: = Syc = Sy). Brittle materials, & < 0.05, do not exhibit an
identifiable yield strength, and are typically classified by ultimate
tensile and compressive strengths, Sy and Sy, respectively (where Sy¢
IS given as a positive quantity). The generally accepted theories are:

Ductile materials (yield criteria)

* Maximum shear stress (MSS)
* Distortion energy (DE)
* Ductile Coulomb-Mohr (DCM)

Brittle materials (fracture criteria)

* Maximum normal stress (MNS)
* Brittle Coulomb-Mohr (BCM)
* Modified Mohr (MM)

2-2. Maximum-Shear-Stress Theory for Ductile Materials (MSS)

The maximum-shear-stress theory predicts that yielding begins
whenever the maximum shear stress in any element equals or
exceeds the maximum shear stress in a tension-test specimen of the
same material when that specimen begins to yield.

The maximum-shear-stress theory predicts yielding when

. 0y — 0y Sy
max 2 Zn




Where S, is the yielding stress, and n is the factor of safety.
Note that this implies that the yield strength in shear is given by

Ssy = OSSy

The MSS theory is also referred to as the Tresca or Guest theory. It
IS an acceptable theory but conservative predictor of failure; and
since engineers are conservative by nature, it is quite often used.

2-3. Distortion-Energy Theory for Ductile Materials (DE)

The distortion-energy theory predicts that yielding occurs when the
distortion strain energy per unit volume reaches or exceeds the
distortion strain energy per unit volume for yield in simple tension or
compression of the same material.

The distortion-energy theory is also called:
* The von Mises or von Mises—Hencky theory

* The shear-energy theory
* The octahedral-shear-stress theory

The distortion-energy theory predicts yielding when

where o’ is usually called the von Mises stress, named after Dr. R.
von Mises, who contributed to the theory; and

' 2 7 24172
o' = oy —oxoy + oy +31,)

The shear yield strength predicted by the distortion-energy theory is

Ssy = 0.5775y



EXAMPLE 2-1

A hot-rolled steel has a yield strength of Sy: = Sy = 100 kpsi and a
true strain at fracture of & = 0.55. Estimate the factor of safety for
the following principal stress states:

(a) 70, 70, 0 Mpa
(b) 30, 70, 0 Mpa.
(c) 0,70, =30 Mpa.
(d) 0, =30, =70 Mpa.
(e) 30, 30, 30 Mpa.

Solution

2-4. Coulomb-Mohr Theory for Ductile Materials (DCM)

A variation of Mohr’s theory, called the Coulomb-Mohr theory or
the internal-friction theory.

Not all materials have compressive strengths equal to their
corresponding tensile values. For example, the yield strength of
magnesium alloys in compression may be as little as 50 percent of
their yield strength in tension. The ultimate strength of gray cast
irons in compression varies from 3 to 4 times greater than the
ultimate tensile strength. So, this theory can be used to predict
failure for materials whose strengths in tension and compression are
not equal; this is can be expressed as a design equation with a factor
of safety, n, as

where either yield strength or ultimate strength can be used.
The torsional yield strength occurs when Tmax = Sgy ; then

Syt Sy

I L L2
5y S}T + .5'_1,-(



EXAMPLE 2-2

A 25-mm-diameter shaft is statically torqued to 230 N-m. It is made
of cast 195-T6 aluminum, with a yield strength in tension of
160 MPa and a yield strength in compression of 170 MPa. It is
machined to final diameter. Estimate the factor of safety of the shaft.

Solution
The maximum shear stress is given by
16T 16(230 : 3
T = = (£0) = =75(10°) N/m”* = 75MPa

nd® 7 [25(1073)]

The two nonzero principal stresses are 75 and —75 MPa, making the

ordered principal stresses o1 = 75, 62 = 0, and o3 = —75 MPa. From
Eq. (2-6), for yield,

I 1

_ — 1.10
01/Sy — 03/Sye  15/160 — (—15)/170

n =

Alternatively, from Eq. (2-7),

SuiSve 160(170)
YT Sy + 8. 160+ 170 A

and Tmax = 75 MPa. Thus,

Ssy 82.4
— = —— = 1.10

n =

2-5. Maximum-Normal-Stress Theory for Brittle Materials
(MNS)

The maximum-normal-stress (MNS) theory states that failure occurs
whenever one of the three principal stresses equals or exceeds the
strength. Again we arrange the principal stresses for a general
stress state in the ordered form o1 > 02 > 03. This theory then
predicts that failure occurs whenever

o1 = Sut or o3 < —Sue
where S;; and S are the ultimate tensile and compressive strengths,
respectively, given as positive quantities.



2-6. Modifications of the Mohr Theory for Brittle Materials

We will discuss two modifications of the Mohr theory for brittle
materials: the Brittle- Coulomb-Mohr (BCM) theory and the
modified Mohr (MM) theory. The equations provided for the
theories will be restricted to plane stress and be of the design type
incorporating the factor of safety.

Brittle-Coulomb-Mohr (BCM)

Tp = — oa=op =0
v~ — o == o4 =0=0p

o =——— 0=0,=0p

Modified Mohr (MM)

Ty = — Fq = o'y = 0
f

TOg

0y

=1

o4 =0=0p and

{’Sw: S.'.'I':I I:’-ir--ll- (‘FH I - -
[ Fq = D = R ﬂﬂd
5!“ Su.‘ Sh'l' n

SI|| '
Op = ——— 0=04 = 0op
m

og

oA

=1

EXAMPLE 2-4

Consider the wrench in Ex. (2-3), Fig. (2-1), as made of cast iron,
machined to dimension. The force F required to fracture this part can
be regarded as the strength of the component part. If the material is
cast iron, the tensile ultimate strength is 31 kpsi and the compressive
ultimate strength is 109 kpsi, find the force F with

(@) Coulomb-Mohr failure model (b) Modified Mohr failure model.



2-7. Selection of Failure Criteria

For ductile behavior the preferred criterion is the distortion-energy
theory, although some designers also apply the maximum-shear-
stress theory because of its simplicity and conservative nature. In the
rare case when Sy # Syc , the ductile Coulomb-Mohr method is
employed.

For brittle behavior, the original Mohr hypothesis, constructed
with tensile, compression, and torsion tests, with a curved failure
locus is the best hypothesis we have. However, the difficulty of
applying it without a computer leads engineers to choose
modifications, namely, Coulomb Mohr, or modified Mohr. Figure
(2-2) provides a summary flowchart for the selection of an effective
procedure for analyzing or predicting failures from static loading for
brittle or ductile behavior.

~«—————— Brittle behavior | Ductile behavior

No Yes

Conservative?

Mod. Mohr Brittle Coulomb-Mohr Ductile Coulomb-Mohr
(MM) (BCM) (DCM)

Eq. (5-32) Eq. (5-31) Eq. (5-26) No Yes

Conservative?

Distortion-energy Maximum shear stress
(DE) (MSS)
Eq. (5-3)

Figure (2-2)

Failure theory selection flowchart.

Homework
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(1) The cantilevered bar shown in the figure is made of AlSI
1006 cold-drawn steel with (S, = 280 MPa) and is loaded by
the forces F=0.55kN, P=8 kN, and T =30 N-m. Compute
the factor of safety, based upon the distortion-energy
theory, for stress elements at A. @ns/n=277)
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